
International Journal of Thermophysics, Vol. 6, No. 5, 1985 

A Scaled Equation of State for Real Fluids 
in the Critical Region 
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A scaled equation of state is proposed for real fluids in the critical region which 
incorporates asymmetry with respect to the critical isochore. In the range of 
reduced densities 0.65 ~< (PIPe)<~ 1.4 and for reduced temperatures (T/T~)<~ 1.2, 
the equation represents P-V-T  data for steam within the experimental accuracy. 

KEY WORDS: critical phenomena; equation of state; scaling laws; steam; 
thermodynamic properties. 

1. INTRODUCTION 

Recently, extended scaling theory (ST) has been used successfully for 
calculations of the thermophysical properties of fluids in a broad vicinity of 
the critical point. Its success is due to the fact that scaling theory has a 
microscopic justification [1,2]. Furthermore, the addition of non- 
asymptotic correction terms in the scaled equation of state made it possible 
to increase considerably the precision and the range of approximation 
[3-5]. The ST equations used for those calculations have been obtained 
for the symmetric lattice-gas model. In such a system, the chemical poten- 
tial along the critical isotherm is an odd function of Ap = (p -Pc)/Pc, the 
dimensionless density deviation from the critical value Pc. The singular part 
of the free energy and isochoric heat capacity and the isothermic com- 
pressibility are even functions of Ap. The densities at the coexistence curve 
diameter Pd = (PL + p~)/2 do not depend on temperature and coincide with 
the critical isochore p=pc .  Thus in the lattice-gas model the critical 
isochore p = Pc is a line of symmetry for the thermodynamic properties. In 

~Moscow Gubkin Institute of Petrochemical and Gas Industry, Leninsky Prospect 65, 
Moscow B-296, 117917, USSR. 

465 

0195-928x/85/0900-0465504.50/0 �9 1985 Plenum Publishing Corporation 



466 Anisimov, Kiselev, and Kostukova 

a real fluid the situation is quite different. Calculations show that the 
precision of the description and the width of the approximation region in 
pure liquids [5-6], and in binary mixtures [7] are greatly influenced by 
the asymmetry with respect to the critical isochore. It is therefore of great 
importance to investigate the influence of this asymmetry on the properties 
of fluids in the critical region. 

A constructive approach to the solution of this problem was proposed 
by Pokrovsky [8], who showed that fluctuations of particles of density An 
and energy AE at a constant volume V= Vc for a liquid are not statistically 
independent ((An AE)v= v0 # 0). This means that in accordance with fluc- 
tuation theory [9], An and AE can be represented as linear combinations 
of the corresponding quantities for the symmetric system. As a consequence 
of such a transformation of the variables An and AE, it appears [8, 10] 
that the coexistence curve diameter has a singular behavior pd--~lZ[ 1-=, 
where z = ( T -  Tr162 is the dimensionless deviation of the temperature T 
from the critical value Tr 

In this paper an equation of state for real fluids in the critical region 
with allowance for asymmetry with respect to the critical isochore is 
obtained on the basis of the Pokrovsky transformations and the extended 
scaling theory. 

2. T H E  P O K R O V S K Y  T R A N S F O R M A T I O N S  

Following the Pokrovsky transformations, let us represent fluctuations 
of the number of particles A N  and those of the entropy AS = S -  So, which 
differ from the energy density only by the factor Tg-I[AS = ( - Tr -~) AE],  in 
the form of the linear combinations of the corresponding symmetric quan- 
tities 

A N  = ANLG + vASLG 

AS  = uANLG + ASLG 

(la) 

(lb) 

The "fields" A# and z conjugate to the quantities A N  and AS are related to 
the thermodynamic potential f2 by 

N =  --~-  (OQ/O/~)~, S =  1 rc  - - - ~  (OQ/Oz)~ u (2) 

They are also linear combinations of the quantities z~/2LG and "~LG 

Ap = ul A#LG + UZZL~ 

Z = /)1 AJ]~LG "t- /)2ZLG 

(3a) 

(3b) 
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where d# = (pc~Pc)[#(p, T ) -  po(T)] is a dimensionless chemical potential, 
Pc is the critical pressure, and u~, u2, v~, and v2 are new constants of the 
transformation. The connection between the constants u and v in Eqs. (la) 
and (lb), on one hand, and the constants ul, u2, v~, and v2, on the other, 
may be derived from the condition 

A#AN + ASz = A#L o ZJNLG q-' ASLo'CLG (4) 

The condition as given by Eq. (4) means that the effective Hamiltonian of a 
real "asymmetric" system corresponds in first approximation to that of the 
lattice-gas symmetric model. Asymmetry manifests itself by the appearance 
of the terms ,,,AN2A# in the effective Hamiltonian, which disturb its sym- 
metry with respect to transformations d# ~ --d/z and AN--* - A N  [11]. 
The Pokrovsky transformations in the form given by Eqs. (1) and (3) do 
make it possible to take into account the appearance of these terms in the 
efective Hamiltonian on the phenomenological level by mixing the 
variables AN  and d S  with the quantities d# and v. The condition given by 
Eq. (4) gives the rule of such a mixing, which in view of Eqs. (1) and (3), 
can be rewritten in the form 

1 U 
d# = 1 - u v  ZJ/['LLG 1 --/dl) ~'LC ( 5 a )  

1 0 
T --  1 --UV ~ L G -  ] --U------"-V A~LG (5b) 

3. APPLICATION TO CALCULATIONS OF THERMODYNAMIC 
PROPERTIES 

As an equation of state for the lattice-gas symmetric model, we have 
used the Schofield parametric representation [12], which has a theoretical 
justification [13]. With allowance for the nonasymptotic terms, obtained 
by the t-expansion method [14], the equation of state is determined by the 
elimination of the variables F and 0 from the following system of 
correlations: 

The singular part of the free energy 
dl~d(dp), then has the form 

A~L G = aFt~60(1 - 02) + cF p6 +'~0 (6) 

~'LG = F( 1 - b202) (7) 

dpLo = ~F~O (8) 

for the lattice gas, ~tLo(F, 0 )=  
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0LG(F, 0)= 
ak F2 ~[2~(b 2 - 1 )  28(27 - 1 )  
2b-----~ L 2 - ~  F 7(1 - ~ )  

+ 

kc F 2-~+A I 
2b 2 [ C ~ - - ~  (1-2fl)b202 

( l -b202) 

2 - c ~ + A  (9) 

Here a, c, and k are constants connected with the individual properties of 
the substance, and e,/~, ~, and ;~ are the critical exponents for the isochoric 
heat capacity, the coexistence curve, the critical isotherm, and the isother- 
mal compressibility, respectively. According to the scaling theory these 
exponents are universal quantities; the exponent A in the nonasymptotic 
term is also universal. Finally, b2 = (7 - 2fl)/7(1 - 2//) and 
k --~- [ ( b 2  _ t ) / I Z o  t ]//, where Zo is the value of the parameter Z = r/IApl ~//~ 
on the coexistence curve. 

Equations (7) and (8) enable us to perform the transition in the plane 
of the curvilinear coordinates F - 0  to the variables T - p  in the case of the 
symmetric model. Equations relating the parameters F and 0 to the dimen- 
sionless temperature ~ and density Ap of the real asymmetric system are 

T , ~  
1 v / ' ( 1 _ b 2 0 2 ) - - -  

1 - uv 1 - u v  
[aF~aO(1 - 0 2) + c F f l 6 + A O ]  (10) 

faKT(7-1)  Ft [ (1-2 /~) (1-c0  1 

_ kc(7+A)  FI_~+A} (11) 
2b2(1 - ~ + d) 

The parameter v turns out to be related to the amplitude of the singular 
part of the coexistence-curve diameter in accordance with the expansion ,of 
Ap at the coexistence curve: 

Ap= • Bo['Cla • B~ l'r]a+ ~ + B2(-'r)l-~' + B 3 ( -  r) (12) 

Substituting into Eqs. (10) and (11) 0= _+1, which values in the c = 0  
approximation correspond to the coexistence curve, and comparing the 
terms with the same powers of ~ in Eqs. (11) and (12), we obtain 

v = -B27(1 - ~)b2(b 2 - 1)' ~/an~(1 - 2/~) (13) 
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Let us analyze on the basis of these expressions the influence of the 
real liquid asymmetry on the behavior of some thermodynamic quantities 
in the critical region. In particular, the equations for the isothermal com- 

capacity pressibility KT = (1/p2)(c3p/~3#)T and the isochoric heat 
Cv = T ( ~ S / ~ T ) p  can be written in the form 

Pc k 1 - 2 v a T O I  v + ~ -  ~ + O(v2r r - c~) 
K *  = - ~  p 2 K  T = - F - 7  (14) 

a 1 + (27 b 2 -  3)02 

T~c pCv 
- (1 - u v ) 2 A r - ~ [ 1  + 2vaTOI  v + ~ - I  + O(v2)] - p  M " ( T )  - (p"(T) 

Pc T Pc 

(15) 

where A = [a~c7(7- 1)/2b2~] and M"(z) and ~0"(z) are analytical functions 
of temperature. 

It is obvious from these equations that the parameter u does not enter 
into the expression for isothermal compressibility. In the other measurable 
quantities z and Cv, it enters in the form of combination ( u v )  in the 
expression (1 -uv) ,  which does not make it possible to derive this quantity 
from the experimental data. In this sense the parameters u and v in the 
Pokrovsky transformations given by Eqs. (la) and (lb) are not equivalent. 

The behavior of the curve of maximum isothermal compressibility, K*, 
is also of interest. In the symmetric lattice-gas model the K* maxima coin- 
cide with the critical isochore p = Pc ( A p  = 0). To obtain the equation for 
the K* maxima in a real asymmetric system, let us differentiate Eq. (14) 
with respect to alp. Then after algebraic transformations in the linear 
approximation in v and 0 from Eqs. (10), (11), and (14), we obtain 

ray  F 1 -  ~ - ~ (16) Omax-- 2(b27- 1) 

It is convenient to rewrite this expression in some other form. By sub- 
stitution of Eq. (15) in Eq. (11) with account of Eq. (13) and by replacing 
critical exponents by their numerical values, we obtain 

ZJPma• B2"c ~ ~ (16a) 

This means that the line of K* maxima in a one-phase region in first 
approximation is the reflection of the line of the symmetry (the line of the 
"singular" diameter) in the two-phase region. 

For further analysis of the equations let us consider the behavior of 
the mentioned properties on some selected lines and compare the obtained 
correction terms with the next-order approximation of the scaling theory. 



4~
 

T
ab

le
 I

. 
C

or
re

ct
io

ns
 o

f 
th

e 
A

sy
m

pt
ot

ic
 L

aw
s 

w
it

h 
A

cc
ou

nt
 o

f 
T

ra
ns

fo
rm

at
io

ns
 G

iv
en

 b
y 

E
qs

. 
(1

) 
an

d 
(5

) 

T
he

rm
od

yn
am

ic
 

qu
an

ti
ty

 
Se

le
ct

ed
 

A
sy

m
pt

ot
ic

 
A

cc
ou

nt
in

g 
of

 
li

ne
 

be
ha

vi
or

 
no

na
sy

m
pt

ot
ic

 t
er

m
 

A
cc

ou
nt

in
g 

of
 

as
ym

m
et

ry
 

(T
~

cp
C

~
IP

~
T

) 

P
~

(p
~

/p
~

)K
T

 

(P
L 

--
 p

G
)/

2p
~ 

(P
L 

+ 
po

)/
2p

~ 

P 
= 

Pc
 

"C
 -~

 
.f 

-~
+

 
A 

T
=

 T
~ 

IA
pl

-o
<h

~ 
IA

Pl
 ( 

,+
~>

/~
 

P
=

P
r 

z 
~ 

z 
~

+
~

 
T

=
 T

c 
IA

p1
-7

1~
 

iA
pl

 (
 

~+
,~

)//
, 

T
=

 T
s 

i~
l p

 
I~

1 p
+~

 

T
=

~
 

T
=

 T
~ 

+ 
[A

Q
I(

-~
-,~

jI
# 

++
_ iA

pl
 ( 

~
- 

i~
+

 s
sm

 

"C
 

o~
+ 

(~
--

 
oO

 

.g
 - 

~,
 +

 
(',

/ 
oO

 

IT
II

--
~(

 _
~.

0(
[.

~1
 

_[
_ 

[T
I1

 
~-

-z
l)

 

Y
 

r 



Equation of State for Fluids 471 

Namely, let us consider nonasymptotic corrections on the critical isochore 
(Ap=0,  F~]zI ,  0,-~]vl 1-~-n) and on the critical isotherm [~=0 ,  
F~J3pl un, IOl~l/b+O(F~-l)] and compare them with the terms 
~cF n~+'~ in Eqs. (6) and (10). The results of this analysis are presented in 
Table I. As follows from the Table I, the exponents for the nonasymptotic 
terms connected with the asymmetry are substantially large than the non- 
asymptotic terms (A ~0.5, 7 -  ~"~ 1.1) on the critical isochore. In addition, 
since 7 -  2~ ~ 1, it is difficult to distinguish between asymmetric corrections 
for the isochoric heat capacity and the regular terms ~ ~ which appear due 
to expansion of the functions M"(z) and ~0"(z) in powers of z. As first men- 
tioned in a previous paper [ 15 ], the value of the second derivative of the 
chemical potential with respect to the temperature on the critical isochore 
remains finite in the critical point [ (~2#/Sz2)p = pc ~ z7 - 1 - ~ ~ zo.1 ], and only 
its third derivative tends to infinity. This resolves the question of what 
quantity diverges in the well-known expression for the isochorous heat 
capacity 

C v _ l  (02P~ ( 8 2 ~  

The investigated quantities behave quite differently on the critical 
isotherm. In this case when IB21 ~> [el, asymmetric corrections become of 
the same order as the nonasymptotic terms (y + / 7 - 1  ~3~0 .5 ) .  Thus in 
the description of the experimental P-V-T data as well as of KT, Cp, and 
Cv in the wide range of Ap in terms of a single equation of state, both non- 
asymptotic and nonasymmetric terms should be taken into account. As for 
the second derivative of the chemical potential with respect to temperature, 
it depends nonanalytically on the density. It tends to infinity at p = p~ and 
T =  To even in the asymptotic approximation without taking into account 
the asymmetry. Namely, from Eq. (17), with the help of the known ther- 
modynamic equality (1/T)(SCv/OV)= (82P/ST2)~, we obtain 

i.e., the quantity (~? 2#/& 2) behaves as I A p [ [( - ~ + B)/~3 while approaching the 
critical point along the line T =  To (see Table II). Asymmetric corrections 
in this case remain of the same order as the nonasymptotic terms. 

4. THE ASYMMETRIC SCALED EQUATION OF STATE 

Unfortunately, the Pokrovsky transformation in the form given by 
Eqs. (1), (5), (10), and (11) does not make it possible to perform an 



T
ab

le
 I

I.
 

B
eh

av
io

r 
of

 V
ar

io
us

 T
h

er
m

o
d

y
n

am
ic

 V
al

ue
s 

in
 t

he
 C

ri
ti

ca
l 

R
eg

io
n 

w
it

h 
A

cc
ou

nt
 o

f 
A

sy
m

m
et

ry
 

T
he

rm
od

yn
am

ic
 

P
ok

ro
vs

ky
 t

ra
ns

fo
rm

at
io

n,
 

L
ey

-K
oo

 a
nd

 G
re

en
 

"A
sy

m
m

et
ri

c"
 

qu
an

ti
ty

 
C

on
di

ti
on

 
E

qs
. 

(1
) 

an
d 

(5
) 

an
al

ys
is

 [
16

] 
E

qs
. 

(2
6)

 a
n

d
 (

32
) 

A
# 

p
=

p
~

 
z ~

+
~-

~'
 

z
~

+
~

-~
+

z
 ~

+~
 

z 
~

+
~

-~
 

T
- 

T~
 

• 
[A

pl
 ~

 -t
-I

A
pl

 a
+

r 
--

'~
 

+_
 IA

pl
6+

_ 
IA

pl
 a

+
('~

/a
) 

+
 [

A
p[

 6
+

[(
7+

l~
 

~)
//~

] 
+

 [
A

p[
 6

+
[(

r+
l~

-~
)l

#]
 

T
- 

T
 s 

--
" 

Iz
sl

 a
6+

~ 
+ 

[Z
s[

 ~t
~6

- x
 +

 I
~:

s[
 2[

~6
+

2~
 

+ 
Ir

sl
 2

/~
- 

a +
a 

t,a
 

[.C
sl2

#6
 

1 
}_

 [T
S[

2/
~6

 
I+

A
 

(T
d

P
~

)(
p

C
JT

) 
p

=
p

~
 

z-
~

+
z-

~
+

~
+

zr
 

z'
+

r+
co

n
st

 
�9

 
~

+
*

 
~

+
a+

z+
co

n
st

 

T
=

 T
c 

la
p[

 
~

1~
+

 lA
p[

 (
-~

+
~)

/~
 

--
~

 

• 
]A

p[
[ 

~,
+(

~,
+.

a 
~)

]/
# 

T
=

T
s 

,7
 

iz
sl

-=
 +

 I
~s

l-
=+

a 
+ 

iv
sl

-=
+

~ 

+ 
Ir

sl
 +

 c
on

st
 

P
c(

p2
/p

2c
)K

T 
p

-p
r 

z 
r+

z 
~+

'~
+

'v
 -

~
 

z-
~

+
z 

r+
z+

'r
 

r+
z'

J+
'c

 
~ 

T
=

 T
r 

IA
p[

-~
/~

 +
 l

A
p[

 (-
~+

~)
/a

 
--

~
 

+ 
]A

pl
[-

~
+

(r
+

~
 

~)
]/

~ 

+ 
I~

sl
-r

+2
~ 

~
+

'c
 

~
+

A
 +

 
T

-?
-~

 
+

*
 

+ 
co

n
st

 

[A
pl

 
~/

a 
+

 l
 A

pl
 (

 
~ +

 ~
vt

t 

+
 l

ap
[ 

t-
~

+
 c

7 +
 t~

- 
t)]

/f~
 

iv
sl

-=
+

 
i~

sl
 

c~
 +

A
 _

~_
 i,

[s
i 

1 
2a

 
[J

 

+ 
Iz

sl
~-

~-
~ 

+ 
I~

sl 
+ 

co
ns

t 

"C
 

rq
--

'C
 

~,
+z

l 

IA
pl

--~
/t~

+ 
iA

Pl
 ( 

~
+

~
)/

t~
 

+ 
[A

pl
 [

-~
+

r 
i)

]/
# 

I~
sl

-~
 +

 I
~

sl
-~

+
~

+
 I

~s
lt

~-
I 

+ 
IT

sl
 

~+
2~

 

B
 ? 

A
sy

m
pt

ot
ic

s 
w

er
e 

no
t 

an
al

yz
ed

. 

o 



Equation of State for Fluids 473 

analytical integrating in the variables p and T. This means that within the 
framework of this approach, it is not possible to obtain in the parametric 
form the rigorous equation for a free energy and, consequently, for the 
pressure of fluids. Nevertheless, this approach yields a rather simple and 
physically justified approximation of such an equation. 

To obtain an asymmetric equation of state for real fluids, we assume 
that v = 0 in Eqs. (1), (3), and (5) and consider parameter u as a function 
of F and 0. As all the scaling equations are analytic functions of the 
variable 0 in the parametric presentation, the function Cr(F, 0) can be 
represented in the form of a series in even powers of 0: 

~f(1 ~, 0)=1 ~AA ~ hi 02(i-1). (18) 
i = 1  

We have already taken into account here that the influence of the asym- 
metry is due to the appearance of the even terms in the chemical potential 
with respect to Ap. By substitution of the expansion given by Eq. (18) into 
Eq. (5a) instead of the parameter u and limiting of the terms, we obtain the 
following expression for the chemical potential of a real asymmetric system: 

zJu(F, 0) = Zl/.tLG(/" , 0)-t--/'zla + l [ b l  q - ( b 2 - b ~ b Z ) 0 2 +  (b3-b2b2)O 4] (19) 

The exponent AA and the expansion constants bl, b2, and b3 in Eq. (19) 
can be determined by identifying the asymmetric terms arising from 
Eq. (19) in the isothermic compressibility K* and the heat capacity Cv with 
the corresponding terms in Eqs. (14) and (15) which have been obtained 
from the rigorous Pokrovsky transformations. For this purpose we dif- 
ferentiate Eq. (19) with respect to Ap and compare the resulting exponent 
of F with the corresponding exponent in Eq. (14). From the condition of 
equality of these exponents of the asymmetric terms, we obtain 

AA = 27 + 2/3 - 2 (20) 

To trace a connection among the coefficients bl, b2, and 6 3 and to obtain 
the general form of a free energy with account of the asymmetry, we 
integrate Eq. (15) twice over T [the coupling equations between the 
variable (F, 0) and the variable (p, T) in the considered approximation are 
being set by Eqs. (7) and (8)]. We thus obtain the following expression for 
the free energy per unit volume: 

F 7 

L P~ 3 
(21) 
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where the singular part of a free energy due to asymmetry has the form 

k F2~+3~_lO[hl +h202+h304 ] (22) As  = 

To pass from the free energy to the chemical potential # = (apF/dp)T, we 
make use of the equality A/~ = (~?~/OAp)~. Then we obtain from Eqs. (19) 
and (22) with Eqs. (7) and (8), 

h i=b ib2 ,  h2=b2bZ-b lb4 (1  + 2 e - 2 ~ ) ,  
3 

(23) 
h3 = b2 1 - 2// 10/~-- 2e [2hl(e - / / ) (1  - 2//)b 2 + 2h2(e - 3//)] 

The parameter b3 in Eq. (19) turns out to be related to the coefficients bl 
and bz by 

b3 = blb4(el - e2) + b2b2(1 - e2) (24) 

Introducing a new notation for b~ and b~, 

b~ = d, b2 = ( f +  d)b 2 (25) 

we finally obtain Eqs. (19)-(23), asymmetric equations for a chemical 
potential and the singular part of a free energy: 

AI~(F, O) = AISLe(F, O) + F 27 + 2~- ~ [d( 1 + e~ b404) -t- fb202(1 + ezb202)] (26) 

1 b202 ~9(F, 0) = ~kL~(F, 0) + k F  z~ + 3t~- , 0 d+  -~ I f -  2d(e --/ /)]  

1-2// } 
+ ~ [de I +fe2]b404 (27) 

Here d and f are new nonuniversal constants, the functions zJ#L~(F, 0) and 
~bLG(/', 0) are calculated in accordance with the corresponding expressions 
for a symmetric lattice-gas model [Eqs. (6) and (9)], and the values e, el, 
and e2 depend only on the critical exponents and have the following form: 

e = 2 7 + 2 / / -  1 

2(5 - 2e)(e - / / ) (3  - 2e) 
(28) el = 3(10//-  2e) 

2(5 - 2e)(e - 3//) 
e2 - 3(10//-  2e) 
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The asymmetric equation for the pressure P = --p2(OF/c~p)T of a real fluid 
becomes 

P = P c [ P A # ( F ,  O)-~(F,  0 ) -  ~o(~)] (29) 

where the functions AI~(F, O) and O(F, 0) are calculated with the help of 
Eqs. (26) and (27). The function q~(z) is analytic and can be represented by 
an expansion of the form 

q)(z) = -1 + fl"c + f2z 2 +f3"c  3 +f4"c  4 (30) 

The relation between the parameter (F, 0) and the parameter (3, Ap) has 
the same form as for the symmetric lattice-gas model Iv = 0 in Eqs. (10) 
and (11)] with the exception of the term ~B3z, which is to be added to 
Eq. (8): 

~=r(1 -b202) (31) 

Ar I = zip -t- B j T =  NFBO (32) 

The coefficient B 3 corresponds to the slope of the rectilinear diameter on 
the coexistence curve in the scaled Eq. (12). This term is necessary so as to 
take into account the term ~zlN3z in the effective Hamiltonian, which dis- 
turbs its symmetry with respect to zlN. This term can be eliminated by a 
formal transformation AN--* AN + const [ 11 ], which makes it possible to 
pass from the variable Ap to the new variable At/= Ap + const.z in Eqs. 
(26) and (27) without changing the form of the thermodynamic potential 
given by Eq. (21). 

It can be shown that Eqs. (21) and (26)-(32) lead to the same results 
in the behavior of the thermodynamic quantities as those of the Pokrovsky 
rigorous transformations given by Eqs. (1) and (5). They are also in good 
agreement with the results of the renormalization-group analysis carried 
out by Ley-Koo and Green [16]. For this, let us consider the behavior of 
the main thermodynamic quantities along the coexistence curve, the 
equation for which can be found from the conditions 

P(F1, Ol)-P(1"2, 02)=0 

~(Cl, 01)- ~(F2, O2)=0 
(33) 

rs--z(F1, 01)=0 

~'S - -  T(F2.  02) = 0 

Here rs = (Ts - Tc)/Tc (Ts is a temperature of saturation), and F~, 0~ and 
F2, 02 correspond to the parameter values F and 0 on the liquid and gas 

840/6/5-4 
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branches of the coexistence curve, reprectively. Let us consider the relations 
given by Eq. (33) as that of the implicitly defined functions 

01 = 01(F1 Ix1, x2, x3) 

02 = 02(/-'21 xl, x2, x3) 
(34) 

xl = c/a, x2 = d/a, and x3 = f/a [a, c, d, and f a r e  nonuniversal constants in 
Eqs. (26) and (27)]. Then, expanding 01 and 02 in powers of x; in the 
vicinity of the point x i = 0  [01,2 = _+1, FI = F2= IvL/(b 2 -  1)], we obtain 
from Eq. (33) with Eqs. (6), (9), and (26)-(31) in the linear approximation 
in 0, 

01,2= +1 +alz~ +(a2+a3)F  1-~ ~ (35) 

where 

al =~a,  a2=db2(b2el  2 - e + f l  

a3=fb2(b2e2  2 - e + ~  

Let us rewrite Eq. (35) in a slightly different form, namely, replacing F with 
IZsl/(b 2 -  1) in accordance with Eq. (31). After substitution into Eq. (32), 
we obtain the following equation for the density on the coexistence curve: 

, k ( - % ) ~ +  k c ( - r s )  ~-A k(a2 + a3)( _%)1 
q- (b z _ 1 ) 1 _  ~ q- B 3 ( - - r s )  (36) 

Comparing this result with the scaled equation for the coexistence curve, 
we obtain 

k 
Bo = (b 2 _ 1) ~ (37) 

kc 
B1 = 2a(b 2 _ 1 )a+a (38) 

The parameters d and f are related to the amplitude of the "singular" 
diameter by the following expression: 

kb 4 [e-f l -2  d(e-fl)+ f ]  (39) 
B2= a(b2_ 1),_, 5-~'-~-e (del + fe2) 3b 2 
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Next we determine the behavior of the maxima of the isothermal com- 
p 2 2 K  pressibility K* = c(P ~Pc) z, the equation for which can be obtained from 

the condition 

c9 8p = 0 or \~3dp2jr = 0 (40) 
~dp -~ r r 

Differentiating Eq. (26) twice with respect to zip and after simple but 
tiresome algebraic transformations in a linear approximation in 0, we 
obtain from the condition given by Eq. (40), 

0maxK'~ = __b 2 d(e - fl) + f r ' - ' -  ~-- (~- -  ~ ~- ~' (41) 

After substitution of this expression into Eq. (32) and using Eqs. (31) and 
(39), we finally obtain 

B2 I kb: (del +__fez)(ezfl-2)] z ,_~_ B3 T (42) 
ziPmax K~ - -  (~b 2 - 1) 1 + aBe2 (b 2 - 1)~ - ~ - 2e) 

Comparing this equation with Eq. (16) we see that, contrary to the 
Pokrovsky transformations, the sign before the term ~ ~ -  ~ depends not 
only on that of B2, but also on the numerical value and the signs of the 
parameters a, d, a n d f  In addition, as there is also the term ~~ in Eq. (42), 
the maxima line may have a different form, which is determined by the 
whole combination of constants in Eqs. (26) and (32). 

The expressions obtained make it possible also to evaluate the 
behavior of the coefficient of the isothermal compressibility pZKT= 
(Op/O#) T and the isochoric heat capacity (pCv/T)= -(632F/c~T2)p on the 
coexistence curve. For this, let us differentiate Eq. (26) with respect to den- 
sity and differentiate Eq. (21) with respect to temperature twice. Then after 
substitution of the value of the parameter 0 on the coexistence curve given 
by Eq. (35) in the expressions obtained, and keeping the leading terms in 
F, we obtain, finally, for the isothermal compressibility and for the heat 
capacity along the coexistence curve, 

p2gT ---- Fo I"csl 

pCv 
- - = A 0 1 z s [  
Ts 

The behavior 
curve, as well 
isotherm [ 0 =  

-~(1 + F1 I~s[ ~ + F2 I~sl ~+~- l + G I~sl 2~) 
(43) 

-:~(1 +AllZS] +Azlvsl~-~-~+A31Vsl~-t~+A4l~sl)+A5 

of the other thermodynamic quantities on the coexistence 
as on the critical isochor (0 = 0, F =  ~) and on the critical 
+l/b, F= (IzipfB/k)~/e], can be evaluated in a similar way. 
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The results of this analysis, together with the results obtained both from 
the Pokrovsky transformations and from the analysis performed by Ley- 
Koo and Green [16], are presented in Table II. It is evident from Table II 
that the equations obtained give asymptotics, which coincide with those 
obtained by other methods, on practically all selected lines. Thus, e.g., the 
Pokrovsky transformations and the equations obtained identically 
described the behavior of the chemical potential and, consequently, that of 
its second derivative (~21~/~TZ)~z~-~-~ on the critical isochore as a 
function of temperature. The asymptotics of all investigated quantities 
which depend on the density on a critical isotherm also fully coincide. This 
fact, as mentioned above, is particularly important for the investigation of 
the influence of the asymmetry of a real fluid with respect to the critical 
isochore. The singularities of the behavior of the isothermal compressibility 
on the coexistence curve, depending on temperature, coincide identically. 
Some slight differences manifest themselves in the temperature dependence 
of the heat capacity Cv both on the critical isochore (terms ~z  ~- 2~ and 
~ - ' )  and on the coexistence curve (terms ~z  -~+~, ..~zl-2~-~, and 
~ z l - , - r  and also of the isothermal compressibility on the critical 
isochore (term ~-c-~ appears only from the Pokrovsky transformation and 
from the analysis performed by Ley-Koo and Green [16], and it is absent 
in the "asymmetric" equation). The terms mentioned are substandially 
smaller than the leading asymptotic terms in the corresponding equations. 
In addition, they are commensurable with terms proportional to .-~ 3, which 
arise while expanding the regular part of the thermodynamic potential in 
powers of z. 

Thus we see that the equations obtained provide an adequate descrip- 
tion of the singularities in the behavior of all thermodynamic quantities due 
to the asymmetry of a real fluid. 

It is also necessary to emphasize that approaching the critical point 
(or in the limit of d and f ~ 0 ) ,  they reduce to the rigorous scaled 
equations. Such a structure of the equations obtained makes it possible to 
use them not only for calculation of the thermodynamic properties of pure 
substances, but also for that of binary mixtures in the critical region. In this 
case it is sufficient in the isomorphous equation of state described in Ref. 7, 
to use the function ~b(F, 0), calculated with the help of Eq. (27). 

5. APPLICATION 

To test quantitatively the effectiveness and the accuracy of the 
equations obtained, we have used the asymmetric equation of state for a 
real fluid for the description of the P, V, T data for steam in a broad range 
around the critical point [17]. The parameters in the equation were deter- 
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Table III. Parameters in the Equation of State Given by 
Eq. (29) of Steam in the Critical Region 
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Parameter Mean value 95 % confidence interval 

k 1.404 - -  (fixed) 
B 4 - 0.45 - -  (fixed) 
a 22.94 +0.15 
c -4.12 +0.36 
d 4.43 + 0.70 
/ -8.89 __+1.1 
f l  -7.812 +0.0t2 
f2 18.3 +0.51 
f3 10.1 --+4.4 
f4 --40.2 _+ 13.0 

mined from a fit to the experimental P, V, T data of Rivkin and co-workers 
[-18-20]. For  this purpose we use the algorithm proposed by Berestov and 
Malyshev [-21], which makes it possible to determine the parameters and 
their confidence limits and also to test the adequacy of the model with the 
help of the Fisher criterion F0.95(N1, N2) ( N  is the number of free 
parameters, and N2 is the number of points). The values of the critical 
exponents ct, ]~, and A were fixed at e = 0.11,/J = 0.34, and A = 0.45, and the 
critical exponents were calculated according to the known scaling-theory 
correlations (? = 2 - ~ - 2/~, /~6 = ? +/~). The values of the critical tem- 
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Deviation of experimental values of pressure in the critical region of steam from 
calculated values: (1) T/Tc= 1.20; (2) 1.16; (3) 1.12; (4) 1.08; (5) 1.07; (6) 1.06; (7) 1.04; 
(8) 1.03; (9) 1.02; (10) 1.01; (11) 1.00; (12) 0.99. 
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perature and density were assumed to be equal to Tc = 647.067 K and 
p = 322.778 kg-m -3, in agreement with the values determined by Levelt- 
Sengers et al. [22]. The critical pressure Po = 22.07 _+ 0.09 MPa was found 
from a fit to the experimental data. The values of the parameters k and B3 
were determined from a fit to the data on the coexistence curve [23 ]. The 
values of the parameters are listed in Table III, and the results of the 
calculations are shown in Fig. 1. It is seen from the figure that in the range 
of temperatures from the saturation line (T=  Ts) to T =  1.2To and for the 
densities 0.65 ~< (P/Pc)<~ 1.4, the discrepancies between the experimental 
and the calculated values of the pressure average 0.05-0.04 %, which is 
within the experimental error. In addition, all the optimized parameters in 
Eqs. (26)-(32) are statistically significant (see Table III) and the equation 
obtained adequately describes the experimental data IF(9, 90)=  1.5761 in 
the range mentioned above. This yields strong evidence for the physical 
and methodical reliability of the proposed equations. 
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